f ROBUST MODELS FOR OPERATOR WORKLOAD ESTIMATION

نویسندگان

  • Andrew M. Smith
  • Brian G. Woolley
چکیده

As modern technology continues to advance, how can we prevent the human from becoming the weakest component of the human-machine system? When operators are overwhelmed, judicious employment of automation can be beneficial. Ideally, a system which can accurately estimate current operator workload can make better choices when to employ automation. Supervised machine learning models can be trained to estimate workload in real time from operator physiological data. Unfortunately, estimating operator workload using trained models is limited: using a model trained in one context can yield poor estimation of workload in another. This research examines the utility of three algorithms (linear regression, regression trees, and Artificial Neural Networks) in terms of cross-application workload prediction. The study is conducted for a remotely piloted aircraft simulation under several context-switch scenarios – across two tasks, four task conditions, and seven human operators. Regression tree models were able to cross-predict both task conditions of one task type within a reasonable level of error, and could accurately predict workload for one operator when trained on data from the other six. Six physiological input subsets were identified based on method of measurement, and were shown to produce superior crossapplication models compared to models utilizing all input features in certain instances. Models utilizing only EEG features show the most potential for decreasing cross-application error for certain contexts. These findings will contribute to the future development of robust workload estimators for use in on-line adaptive aiding systems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Definition of General Operator Space and The s-gap Metric for Measuring Robust Stability of Control Systems with Nonlinear Dynamics

In the recent decades, metrics have been introduced as mathematical tools to determine the robust stability of the closed loop control systems. However, the metrics drawback is their limited applications in the closed loop control systems with nonlinear dynamics. As a solution in the literature, applying the metric theories to the linearized models is suggested. In this paper, we show that usin...

متن کامل

Robust high-dimensional semiparametric regression using optimized differencing method applied to the vitamin B2 production data

Background and purpose: By evolving science, knowledge, and technology, we deal with high-dimensional data in which the number of predictors may considerably exceed the sample size. The main problems with high-dimensional data are the estimation of the coefficients and interpretation. For high-dimension problems, classical methods are not reliable because of a large number of predictor variable...

متن کامل

Almost Sure Convergence Rates for the Estimation of a Covariance Operator for Negatively Associated Samples

Let {Xn, n >= 1} be a strictly stationary sequence of negatively associated random variables, with common continuous and bounded distribution function F. In this paper, we consider the estimation of the two-dimensional distribution function of (X1,Xk+1) based on histogram type estimators as well as the estimation of the covariance function of the limit empirical process induced by the se...

متن کامل

Robust Estimation in Linear Regression with Molticollinearity and Sparse Models

‎One of the factors affecting the statistical analysis of the data is the presence of outliers‎. ‎The methods which are not affected by the outliers are called robust methods‎. ‎Robust regression methods are robust estimation methods of regression model parameters in the presence of outliers‎. ‎Besides outliers‎, ‎the linear dependency of regressor variables‎, ‎which is called multicollinearity...

متن کامل

Case Mix Planning using The Technique for Order of Preference by Similarity to Ideal Solution and Robust Estimation: a Case Study

Management of surgery units and operating room (OR) play key roles in optimizing the utilization of hospitals. On this line Case Mix Planning (CMP) is normally applied to long term planning of OR. This refers to allocating OR time to each patient’s group. In this paper a mathematical model is applied to optimize the allocation of OR time among surgical groups. In addition, another technique is ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015